

Hva er cloud og virtualisering? Og hvorfor trenger vi det?

Mobil Agenda – 06.06.2017

Isabelle Tardy og Aida Omerovic – SINTEF Digital

The 5G promised land

- ✓ Umbrella covering all legacy 2G-4G +
 - ✓ Mission critical communication
 - $\checkmark\,$ Things and people
- ✓ Challenges
 - ✓ Higher capacity
 - ✓ Lower end-to-end latency
 - ✓ Massive device connectivity (IoT)
 - ✓ Consistent QoE
 - ✓ Reduced OPEX and CAPEX costs

European Commission

3 service categories of 5G

✓ eMBB

✓ capacity enhancement

✓ Massive machine type communication (mMTC)

- ✓ 106 devices /km², 99.9 % availability, 125 b/s *
- ✓ Critical machine type communication (uMTC)
 ✓ High reliability (10⁻⁵) success, latency < 0.5 ms *

5G will support applications with very different requirements \rightarrow Need for flexible, "elastic" solutions

ITU-R, "Recommendation ITU-R M.2083-0, IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond," Sep 2015.

SINTEF

Software network technologies in 5G - virtualization

- ✓ The overall network should be SW-(re)configurable in order to address conflicting requirements
- ✓ Decoupling of SW and HW = virtualizing
- ✓ Reuse of infrastructure resources (SW and HW platforms) ☺
- ✓ Network Slicing
 - Deployment of multiple logical networks as independent business operations
- ✓ Future-proofing design as updates can be easily and swiftly implemented by SW ☺

Virtual Network Functions in 5G

- ✓ Extension of the notion "resource"
 - The VNFs will play an important role especially in the design of Core Network functions
 - ✓ Connectivity; filtering, forwarding, packet inspection
 - Computation; virtual machines, SW running on top of high-volume platforms, switches...
 - Storage; database functionality inside or edge of network
- $\checkmark~$ VNF are defined regardless of physical infrastructure
 - Mapping to physical architecture in a service-specific way
 - ✓ Flexible instantiation ☺
 - ✓ Avoids vendor lock-in ☺

What is cloud computing?

 NIST 800-145 definition: Ubiquitous, convenient, ondemand network access to a shared pool of configurable computing resources

Cloud computing: service delivery

"As A Service" trend =

Service provider responsibility

Infrastructure as a Service (laaS)

Definition

 Delivers computer infrastructure, typically a platform virtualization environment as a service. Service is typically billed on a utility computing basis and amount of resources consumed.

Customization

 Customization where technology being deployed requires minimal configuration

Operational notes

- · Easier to migrate applications
- User of Cloud maintains a large portion of the technical staff (Developer, System Administrator, and DBA)

Platform as a Service (PaaS)

Definition

 Delivers a computing platform as a service. It facilitates deployment of applications while limiting or reducing the cost and complexity of buying and managing the underlying hardware and software layers

Customization

- Moderate customization build applications within the constraints of the platform
- **Operational notes**
- Applications may require to be rewritten to meet the specifications of the vendor
- User of the Cloud maintains a development staff

Software as a Service (SaaS)

Definition

- Delivers software as a service over the Internet, avoiding the need to install and run the application on the customer's own computers and simplifying maintenance and support.
- Customization
- Limited customization existing applications likely not be able to migrate
- **Operational notes**
- Applications may require to be rewritten to meet the specifications of the vendor
- User utilizes the vendors IT staff and has limited to no technical staff

Cloud vendor responsibility

SINTEF

Combining virtualization and cloud

- ✓ Network and virtualization layer links cloud services and providers of data centers
- ✓ Control points are spread

- 1. SaaS controls
- 2. PaaS controls
- 3. JaaS controls
- 4. Virtualization controls
- 5. Data management and storage controls
- 6. ACLs
- 7. Communication channels
- 8. Supporting

Software as

SINTEF

Virtualization and cloud environments

- Ecosystems; 3rd parties and vendor chain. From integration of services and platforms to more open market place
 - ✓ 5G-centered umbrella
 - ✓ De-centralized approach
- ✓ Multi-cloud environments for different slices / KPIs
- ✓ Combination of cloud services
- ✓ Best of breed ☺
- \checkmark Redundancy and always available services \bigcirc
- ✓ Develop and roll-out new services in a very short time ☺

Previously separated ecosystems are converging into a fully integrated system – the connected society

Telia report "Connected things. New digital ecosystems – unlocking the growth potential of IoT", 2017 edition.

Risks in the context of clouds

✓ Risks are spread

- ✓ Virtualization layer
- ✓ Service: IaAS, PaAS, SaAS
- ✓ Deployment: private vs. public clouds
- ✓ Business models
- ✓ Net neutrality vs. slicing
- ✓ Some examples of good conduct:
 - ✓ Manage authentication and access
 - ✓ Select cloud service providers that respect regulatory frames
 - ✓ Oversight and updating of all cloud service providers
 - ✓ Define privacy processes, monitor and revise privacy statements if necessary
 - ✓ Develop security management procedures across delivery chain

A particular risk: privacy

✓ Personally Identifiable Information (PIIs)

- ✓ Strict legal definition or information leading to person identity
- ✓ Individual identity (name, social security number, date and place of birth, biometric record...)
- ✓ Medical, educational, financial, employment information that can help deducing identity
- ✓ MAC and IP addresses not strictly PII but need protection
- ✓ Ecosystem of PII-dependent digital services is growing
- ✓ PII are collected, stored, exchanged, and applied by different kinds of services....(*)
- ✓ New European law (**) enforcing right to be informed of PII status and possibly to deletion of own PIIs
 - ✓ -> Traceability in the cloud-based network architecture
 - ✓ Important in case of intrusion

11

• A. Omerovic, M. Natvig, I. Tardy, "Privacy Scorecard – Refined Design and Results of a Trial on a Mobility as a Service Example", accepted for publication in the proceedings of the 27th European Safety and Reliability

publication in the proceedings of the 27th European Safety and Reliability Association Conference (ESREL) 2017.

Measures enforcing privacy in a cloud context (*)

✓ Non-disclosure

- $\checkmark\,$ Clear policy to specify how the cloud provider may access customers' data
- ✓ The cloud provider may not disclose any of the customers' data to 3rd party, unless previously agreed
- ✓ The cloud provider will only disclose customers' data to 3rd party on a need-to-know basis

✓ Anonymity

- ✓ The cloud provider will not provide common logs to any other customer or 3rd party
- ✓ Data minimization
 - ✓ The cloud provider will only require the minimal set of data necessary to perform the service
- ✓ Data processing agreement (DPA) statements
 - $\checkmark\,$ The data processor will only act upon instructions from the controller
 - ✓ The data processor will comply with the same security obligations as the controller itself
 - ✓ No change during the lifetime of the contract unless there is consent from the customer

* SINTEF report n.A27131

A concrete case; the smart home (1/2)

- ✓ A highly private sphere
- ✓ Several services
 - ✓ 3-play or individual Internet, broadcast, tel-services
 - ✓ Alarm
 - ✓ Distance heating, appliances control
 - ✓ Smart meters
- \checkmark Services connected to individual clouds
- ✓ Alternatively, local aggregated control through cloud-enabled routers with dynamic deployments and instantiations

A concrete case; the smart home (2/2)

- ✓ Examples of PII to each service 1, 2, 3
 - ✓ Full name
 - ✓ Physical address
 - ✓ Tel-number, email @, MAC @
 - ✓ Favourite TV channels, web sites
 - ✓ Payment details
 - ✓ Energy consumption log
- $\checkmark\,$ When no connection nor coordination between services,
 - Only PII to that service need to be known
 - ✓ No exchange of PIIs across services
- \checkmark Coordination
 - Risk of exchanging PII not necessary to all services but common denominator as a single stakeholder treats PII

Conclusion

- ✓ Service enhancement is case-dependent and relies on clouds
- ✓ Elastic resources
- ✓ Swift time-to-market and updates
- ✓ Redundancy and resiliency
- ✓ Many stakeholders, responsibility must be ensured to retain confidence

Teknologi for et bedre samfunn